GenSo-EWS: a novel neural-fuzzy based early warning system for predicting bank failures
نویسندگان
چکیده
Bank failure prediction is an important issue for the regulators of the banking industries. The collapse and failure of a bank could trigger an adverse financial repercussion and generate negative impacts such as a massive bail out cost for the failing bank and loss of confidence from the investors and depositors. Very often, bank failures are due to financial distress. Hence, it is desirable to have an early warning system (EWS) that identifies potential bank failure or high-risk banks through the traits of financial distress. Various traditional statistical models have been employed to study bank failures [J Finance 1 (1975) 21; J Banking Finance 1 (1977) 249; J Banking Finance 10 (1986) 511; J Banking Finance 19 (1995) 1073]. However, these models do not have the capability to identify the characteristics of financial distress and thus function as black boxes. This paper proposes the use of a new neural fuzzy system [Foundations of neuro-fuzzy systems, 1997], namely the Generic Self-organising Fuzzy Neural Network (GenSoFNN) [IEEE Trans Neural Networks 13 (2002c) 1075] based on the compositional rule of inference (CRI) [Commun ACM 37 (1975) 77], as an alternative to predict banking failure. The CRI based GenSoFNN neural fuzzy network, henceforth denoted as GenSoFNN-CRI(S), functions as an EWS and is able to identify the inherent traits of financial distress based on financial covariates (features) derived from publicly available financial statements. The interaction between the selected features is captured in the form of highly intuitive IF-THEN fuzzy rules. Such easily comprehensible rules provide insights into the possible characteristics of financial distress and form the knowledge base for a highly desired EWS that aids bank regulation. The performance of the GenSoFNN-CRI(S) network is subsequently benchmarked against that of the Cox's proportional hazards model [J Banking Finance 10 (1986) 511; J Banking Finance 19 (1995) 1073], the multi-layered perceptron (MLP) and the modified cerebellar model articulation controller (MCMAC) [IEEE Trans Syst Man Cybern: Part B 30 (2000) 491] in predicting bank failures based on a population of 3635 US banks observed over a 21 years period. Three sets of experiments are performed-bank failure classification based on the last available financial record and prediction using financial records one and two years prior to the last available financial statements. The performance of the GenSoFNN-CRI(S) network as a bank failure classification and EWS is encouraging.
منابع مشابه
FCMAC-EWS: A bank failure early warning system based on a novel localized pattern learning and semantically associative fuzzy neural network
In the banking industry, it is highly desirable to identify potential bank failure or high-risk banks. Successful early warning systems (EWS) would provide capabilities to avoid adverse financial repercussions and a massive bail out costs for the failing banks. Very often, these failures are due to financial distress. Various traditional statistical models have been used to study failures of fi...
متن کاملA nature inspired Ying-Yang approach for intelligent decision support in bank solvency analysis
Since the collapse or failure of a bank could trigger an adverse financial repercussion and generate negative impacts, it is desirable to have an Early Warning System (EWS) that identifies potential bank failures or high-risk banks through the traits of financial distress. This research is aimed to construct a novel neural fuzzy Cerebellar Model Articulation Controller (FCMAC) as an alternative...
متن کاملEvaluating the Application of a Financial Early Warning System in the Iranian Banking System
One of the significant problems of banks and investors in Iran is the lack of precise awareness about the financial performance of each bank and the roadmap for improving the conditions. Besides, the undesirable status of the financial performance of banks becomes evident only when the improvement of conditions is complicated. In this paper, a data mining-based early warning system (EWS) model ...
متن کاملApplication of Fuzzy Optimization and Time Series for Early Warning System in Predicting Currency Crisis
Application of early warning system (EWS) in predicting crisis has drawn a lot of research interests in earlier literature. Recent studies have shown that the development of new EWS models from different field such as artificial intelligence or expert system achieved better prediction than the old statistical model. This paper analyzes the predictability of new methods for EWS which is the comb...
متن کاملRisk Classification of SMEs by Early Warning Model Based on Data Mining
One of the biggest problems of SMEs is their tendencies to financial distress because of insufficient finance background. In this study, an Early Warning System (EWS) model based on data mining for financial risk detection is presented. CHAID algorithm has been used for development of the EWS. Developed EWS can be served like a tailor made financial advisor in decision making process of the fir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural networks : the official journal of the International Neural Network Society
دوره 17 4 شماره
صفحات -
تاریخ انتشار 2004